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S.1 Derivation of bias expressions for MLE/QMLE

In this section we report the derivation of the bias function displayed in Figure 1 of the manuscript.

To assist in the bias calculation we derive the following explicit moment expressions

E(l(1)(λ0)) =
tr(GΩ0(γ))

tr(Ω0(γ))
− 1

n
tr(G) + o(1), (S.1.1)

E(l(2)(λ0)) = −β
′
0X
′G′MGXβ0 + tr(G′GΩ0(γ))

tr(Ω0(γ))
+

2tr2(GΩ0(γ))

tr(Ω0(γ))
− 1

n
tr(G2) + o(1), (S.1.2)

E(l(2)(λ0)l(1)(λ0)) =− tr(GΩ0(γ)) (tr(G′GΩ0(γ)) + β0X
′G′MGXβ0)

tr2(Ω0(γ))
− 1

n
tr(G2)

tr(GΩ0(γ))

tr(Ω0(γ))

+
1

n
tr(G)

tr(G′GΩ0(γ)) + β0X
′G′MGXβ0

tr(Ω0(γ))
− 2

n

tr2(GΩ0(γ))

tr2(Ω0(γ))
+ 2

tr3(GΩ0(γ))

tr3(Ω0(γ))

+
1

n2
tr(G)tr(G2) + o(1), (S.1.3)
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E(l(3)(λ0)) =− 6
tr(GΩ0(γ)) (β′0X

′G′MGXβ0 + tr(G′GΩ0(γ)))

tr2(Ω0(γ))
+

8tr3(GΩ0(γ))

tr(Ω0(γ))

− 2

n
tr(G3) + o(1) (S.1.4)

and

E(l(1)(λ0)2) =
tr2(GΩ0(γ))

tr2(Ω0(γ))
+

1

n2
tr2(G)− 2

n
tr(G)

tr(GΩ0(γ))

tr(Ω0(γ))
+ o(1). (S.1.5)

Let B(γ, λ0) = E(λ̂QML) − λ0. From these calculations and Bao (2013), we deduce the following

result.

Corollary S1 Let ε be a vector of n independent random variables, normally distributed and such

that E(εε′) = Ω0(γ), where Ω0(γ) is defined in (2.7) in the manuscript with σ2 = 1. Let Assumptions

2-4, reported in the manuscript, hold. The leading term of B(γ, λ0) is given by

B(γ, λ0) =− 2
(
E(l(2)(λ0))

)−1
E(l(1)(λ0)) +

(
E(l(2)(λ0))

)−2
E(l(2)(λ0)l(1)(λ0))

−1

2

(
E(l(2)(λ0))

)−3
E(l(3)(λ0))E(l(1)(λ0)2). (S.1.6)

Under Ω0(γ) in (2.7), terms in (S.1.1), (S.1.3) and (S.1.5) do not vanish as n increases, unless

γ = 0 (i.e. the homoskedastic case) and/or some specific structure of W is imposed which ensures

that a condition related to (2.8) in the manuscript holds. Given the likelihood function (2.3) in the

manuscript, the calculation of (S.1.1)-(S.1.4) is based on the explicit computation of moments of ratio

of quadratic form. Most of the moments of ratios involved are indeed exactly ratio of moments, as

ratios of the form ε′Aε/ε′MXε for a generic n × n matrix A are independent of ε′MXε
1. However,

since we are only interested in the leading terms of (S.1.6), we can approximate moments of ratios

as ratios of moments even when the independence conditions fails. The computation of moments is

standard (Bao and Ullah (2007)) and details are omitted here.

S.2 Proofs of the Theorems

Proof of Theorem 1:

Proof of part (i). Let ψij and ψ̃ij be the 2 × 1 vectors defined as ψij = ( ψ1ij ψ2ij )′ =

( (P + P ′)ij/2 (Q′Q)ij )′ and ψ̃ij = ( ψ̃1ij ψ̃2ij )′ = ( (MXP
′)ij (MXQ

′Q)ij )′, respectively.

1See, for example, Conniffe and Spencer (2001), for an analysis and history of this result on ratios of quadratic forms
and other moments.
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After showing

Un =
1√
n

 ε′Pε− tr(P Ω̃) + 2β′0X
′PMXε

ε′Q′Qε− tr(Q′QΩ̃) + 2β′0X
′Q′QMXε

+ op(1), (S.2.1)

as reported in the manuscript, the rest of the proof is similar to KPR (2017). In order to avoid

repetition we refer to their proof when steps follow in a similar way.

Define

ui = ( u1i u2i )′ = 2εi
∑
j

ψ̃ijX
′
jβ0 + 2εi

∑
j<i

ψijεj , (S.2.2)

so that
√
nUn =

∑n
i=1 ui + op(1), according to (S.2.1). The {ui, 1 ≤ i ≤ n, n = 1, 2, .....} form a

triangular array of martingale differences with respect to the filtration formed by the σ-field generated

by {εj ; j < i}. Let

A =V ar

(
n∑
i=1

ui

)
= 4

n∑
i=1

σ2
i

n∑
j=1

n∑
t=1

ψ̃ijX
′
jβ0β

′
0Xtψ̃

′
it + 4

n∑
i=1

∑
j<i

σ2
i σ

2
jψijψ

′
ij . (S.2.3)

Define zin = η′A−1/2ui, where η is a 2 × 1 vector satisfying η′η = 1. By Theorem 2 of Scott (1973)∑n
i zin →d N (0, 1) if the following stability and Lindeberg conditions hold:

n∑
i=1

E(z2in|εj ; j < i)
p→ 1, (S.2.4)

and
n∑
i=1

E(z2in1(|zin > ξ|))→ 0 ∀ξ > 0. (S.2.5)

As n→∞,

A/n→ lim
n→∞

Vn, (S.2.6)

where

Vn =
4

n

 β′0X
′PMXΩ0MXP

′Xβ0 β′0X
′PMXΩ0MXQ

′QXβ0

β′0X
′Q′QMXΩ0MXP

′Xβ0 β′0X
′Q′QMXΩ0MXQ

′QXβ0


+

4

n

∑
i

∑
j<i

σ2
i σ

2
j

 (P+P ′)2ij
4

(P+P ′)ij(Q
′Q)ij

2

(P+P ′)ij(Q
′Q)ij

2 (Q′Q)2ij


= C1 + C2, . (S.2.7)

where C1 and C2 contain the first and second terms in (S.2.7), respectively. All terms in C1 are
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O(1), while those in C2 are bounded by O(1/h) under Assumptions 3 and 4, and by standard algebra.

Existence of limits in (S.2.7) is guaranteed under Assumption 7, and non singularity of C1 is ensured

by Assumptions 2, 3(ii) and 5. Thus, we can replace A by n when showing (S.2.4) and (S.2.5).

We start by establishing (S.2.4), which can equivalently be written as

∑
i

E
(
z2in|εj , j < i

)
− η′A−1/2AA−1/2η →

p
0. (S.2.8)

The latter, by standard manipulations and (S.2.6), is equivalent to showing

4

n
η′

∑
i

σ2
i

∑
j<i

εjψij

∑
j<i

εjψij

′ −∑
i

∑
j<i

σ2
i σ

2
jψijψ

′
ij

 η →
p

0, (S.2.9)

and

4

n
η′

∑
i

∑
j

∑
t<i

σ2
i β
′
0Xj

(
ψ̃ijψ

′
it + ψitψ̃

′
ij

)
εt

 η →
p

0 (S.2.10)

as n→∞.

In order to avoid replications, we omit the proof of (S.2.9), referring to KPR and observing that

||P ||∞ + ||P ′||∞ < K, ||Q||∞ + ||Q′||∞ <∞ (S.2.11)

and both Pij and Qij , for i, j = 1, ...., n, are uniformly bounded by O(1/h), so that ψ1ij and ψ2ij

have, respectively, similar asymptotic properties to (G+G′)ij/2 and (G′G)ij appearing in the proof

of Theorem 1 in KPR. We verify (S.2.10) by examining the convergence of each typical element, i.e.

by showing
1

n

∑
i

∑
j

∑
t<i

σ2
i β
′
0Xjψ̃sijψvitεt →

p
0 (S.2.12)

for each s, v = 1, 2. Under Assumption 5, i.e. for uniformly bounded Xij for i, j = 1, ...., n, the LHS

of (S.2.12) has mean zero and variance bounded by

1

n2
K|
∑
i

∑
j

∑
u

∑
h

∑
t<i,u

ψ̃sijψ̃suhψvitψvut| ≤
1

n2
K
∑
i

∑
j

∑
u

∑
h

∑
t

|ψ̃sijψ̃suhψvitψvut|

1

n
K sup

0<i≤n

∑
j

|ψ̃sij | sup
0<u≤n

∑
h

|ψ̃shu| sup
0<t≤n

∑
i

|ψvit| sup
0<u≤n

∑
t

|ψvut| = O

(
1

n

)
, (S.2.13)

since (S.2.11) holds and

||MXP ||∞ + ||P ′MX ||∞ < K, ||MXQ
′Q||∞ + ||Q′QMX ||∞ <∞ (S.2.14)
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In order to prove (S.2.5) we verify the sufficient Lyapunov condition

n∑
i=1

E|zin|2+δ → 0 (S.2.15)

by considering a typical standardized element of ui, i.e.
∑
i E|(1/n)1/2usi|2+δ for s = 1, 2. Under

Assumption 1, using
∑
i E|usi|2+δ =

∑
i E(E|usi|2+δ|εj , j < i)) and the cr inequality,

(
1

n

)1+δ/2∑
i

E|usi|2+δ ≤
(

1

n

)1+δ/2

K
∑
i

E|
∑
j<i

ψsijεj |2+δ +

(
1

n

)1+δ/2

K
∑
i

|
∑
j

β′0Xjψ̃sij |2+δ.

(S.2.16)

Convergence to zero of the first term at the RHS of (S.2.16) can be shown as in KPR. Convergence

of the third term at the RHS of (S.2.16) can be shown after observing that

|
∑
j

β′0Xjψ̃sij |2+δ ≤ K sup
0<j≤n

|β′0Xj |2+δ
∑
j

|ψ̃sij |2+δ, (S.2.17)

where β′0Xj is uniformly bounded under Assumption 5. Thus, the second term at the RHS of (S.2.16)

is bounded by

(
1

n

)1+δ/2

K
∑
i

∑
j

|ψ̃sij |2+δ ≤
(

1

n

)1+δ/2

K
∑
i

∑
j

ψ̃2
sij

1+δ/2

≤
(

1

n

)1+δ/2

K

sup
i

∑
j

ψ̃sij

δ/2∑
i

∑
j

ψ̃2
sij = O

(
1

n

)δ/2
(S.2.18)

similarly to KPR, under Assumptions 3-5.

Thus, A−1/2
∑
i ui →

d
N (0, I), and the statement in Theorem 1(i) follows by standard delta argu-

ments.

Proof of part (ii). Again, we proceed similarly to KPR and we refer to their proof to avoid

repetitions. We rewrite the binding function τn(λ) as

τn(λ,Ωλ, β̂(λ)) =
tr(P (λ)Ωλ) + β̂(λ)′X ′P (λ)Xβ̂(λ)

tr(Q(λ)′Q(λ)Ωλ) + β̂(λ)′X ′Q(λ)′Q(λ)Xβ̂(λ)
+Op

(
1

n

)
=
a(λ) + b(λ)

c(λ) + d(λ)
+Op

(
1

n

)
, (S.2.19)
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where

a(λ) =
1

n
tr(P (λ)Ωλ), b(λ) =

1

n
β̂(λ)′X ′P (λ)Xβ̂(λ), c(λ) =

1

n
tr(Q(λ)′Q(λ)Ωλ),

d =
1

n
β̂(λ)′X ′Q(λ)′Q(λ)Xβ̂(λ). (S.2.20)

We write

τ (1)n (λ) =
a(1)(λ) + b(1)(λ)

c(λ) + d(λ)
− (c(1)(λ) + d(1)(λ))(a(λ) + b(λ))

(c(λ) + d(λ))2
+O

(
1

n

)
, (S.2.21)

where

a(1)(λ) =
1

n
tr(G′(λ)P (λ)Ωλ) +

1

n
tr(P (λ)G(λ)Ωλ) +

1

n
tr(PΩ

(1)
λ ),

b(1)(λ) = − 2

n
y′W ′(In −MX)P (λ)Xβ̂(λ) +

1

n
β̂(λ)′X ′G(λ)′P (λ)Xβ̂(λ) +

1

n
β̂(λ)′X ′P (λ)G(λ)Xβ̂(λ),

c(1)(λ) =
2

n
tr(G(λ)′Q(λ)′Q(λ)Ωλ) +

1

n
tr(Q(λ)′Q(λ)Ω

(1)
λ ),

d(1)(λ) = − 2

n
y′W ′(I −MX)Q(λ)′Q(λ)Xβ̂(λ) +

2

n
β̂(λ)′X ′G(λ)′Q(λ)′Q(λ)Xβ̂(λ) (S.2.22)

and

Ω
(1)
λ = −2diag(MXWyε(λ)′). (S.2.23)

Since

λ̂CUII − λ0 = τ−1n (λ̂)− τ−1n (τn(λ0)), (S.2.24)

we can derive the limit distribution of
√
n(λ̂CUII−λ0) by the delta method, as long as the asymptotic

local relative equicontinuity condition (Phillips, 2012) holds. Thus, similar to KPR, we need to show∣∣∣∣∣τ (1)n (λ0)− τ (1)n (r)

τ
(1)
n (r)

∣∣∣∣∣→p 0 (S.2.25)

as n → ∞, uniformly in Nδ = {r ∈ < : |s(r − λ0)| < δ, δ > 0}, s = sn → ∞ and s(1/n)1/2 → 0.

Under Assumption 6(ii), the expression on the LHS of (S.2.25) is bounded by

K
∣∣∣τ (1)n (λ0)− τ (1)n (r)

∣∣∣ , (S.2.26)
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which by the mean value theorem is in turn bounded by

K
∣∣∣τ (2)n (λ∗)(λ0 − r)

∣∣∣ , (S.2.27)

where λ∗ is an intermediate point between λ0 and r. The expression in (S.2.27) is Op(|λ0 − r|) =

Op(s
−1) as long as

τ (2)n (λ∗) = Op(1), (S.2.28)

which holds under Assumptions 3-5, a derivation of which will be supplied on request.

Therefore, by a delta argument we conclude that

√
nτ (1)n (λ̂CUII − λ0)→

d
N (0, f̄ ′ lim

n→∞
Vnf̄), (S.2.29)

where Vn and f̄n are defined in (4.4) and (4.11), respectively. The statement in Theorem 1 follows by

standard algebra once we write

τ̄ (1) = τ̄ (1)(λ0) = p lim τ (1)n (λ0)
n→∞

, (S.2.30)

in terms of ā(1), b̄(1), c̄(1) and d̄(1). τ̄ exists and is non singular under Assumption 7(ii).

Proof of Theorem 2:

In order to prove (A.8) in the manuscript, we need to show

1

n

∑
i

∑
j<i

(ε2i ε
2
j − σ2

i σ
2
j )ψsijψtij = op(1), (S.2.31)

1

n

∑
i

∑
j<i

(ε̂2i ε̂
2
j − ε2i ε2j )ψsijψtij = op(1) (S.2.32)

and
1

n

∑
i

∑
j<i

ε̂2i ε̂
2
j (ψ̂sijψ̂tij − ψsijψtij) = op(1). (S.2.33)

7



We start by (S.2.31). We have, for s, t = 1, 2

1

n

∑
i

∑
j<i

(ε2i ε
2
j − σ2

i σ
2
j )ψsijψtij =

1

n

∑
i

∑
j<i

ψsijψtij(ε
2
i − σ2

i )(ε2j − σ2
j ) +

1

n

∑
i

∑
j<i

ψsijψtijσ
2
i (ε2j − σ2

j )

+
1

n

∑
i

∑
j<i

ψsijψtijσ
2
j (ε2i − σ2

i ). (S.2.34)

The first term at the RHS of (S.2.34) has mean zero and variance bounded by

C

n2

∑
i

∑
j<i

ψ2
sijψ

2
tij ≤

C

n2

∑
i

∑
j

ψ2
sijψ

2
tij ≤

C

n2h2

∑
i

∑
j

ψ2
tij = O

(
1

nh3

)
(S.2.35)

since ∑
i

∑
j

ψ2
tij = tr(Ψ2

t ) = O
(n
h

)
for t = 1, 2. The second term at the RHS of (S.2.34) has mean zero and variance bounded by

C

n2

∑
i

∑
j

∑
u

|ψsijψtijψsujψtuj | ≤
C

n2h2

∑
i

∑
j

∑
u

|ψsij ||ψtuj |

≤ C

nh2
sup
j

∑
i

|ψsij |sup
u

∑
j

|ψsij | = O

(
1

nh2

)
. (S.2.36)

Similarly, we can show that the third term at the RHS of (S.2.34) converges to zero in quadratic mean.

By Markov’s inequality (S.2.31) follows.

In order to show (S.2.32) we write

ε̂i = εi −
∑
j

Bijεj − (λ̂CUII − λ0)Q′iXβ − (λ̂CUII − λ0)Q′iε, (S.2.37)

where Q′i is the 1×n vector displaying the i−th row of Q and Bij = X ′i(X
′X)−1Xj , as defined at the

beginning of the proof of Theorem 1. By standard arguments, we can show that the last two terms

on the RHS of (S.2.37) are bounded in probability by 1/
√
n, uniformly in i. Let

v̂i = ε̂i − εi = −
∑
k

Bikεk +Op

(
1√
n

)
. (S.2.38)

Thus, (S.2.32) is equivalent to

1

n

∑
i

∑
j<i

ψsijψtij(v̂iv̂j + εiv̂j + εj v̂i)(v̂iv̂j + v̂iεj + εiv̂j + 2εiεj) = op(1), (S.2.39)
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as n→∞. We therefore need to show, as n→∞, that

1

n

∑
i

∑
j<i

ψsijψtij v̂
2
i v̂

2
j = op(1), (S.2.40)

1

n

∑
i

∑
j<i

ψsijψtij v̂
2
i v̂jεj = op(1), (S.2.41)

1

n

∑
i

∑
j<i

ψsijψtij v̂iv̂jεiεj = op(1), (S.2.42)

1

n

∑
i

∑
j<i

ψsijψtij v̂
2
i ε

2
j = op(1), (S.2.43)

1

n

∑
i

∑
j<i

ψsijψtij v̂jε
2
i εj = op(1). (S.2.44)

We only consider the leading term in v̂i in (S.2.38) when showing (S.2.40)- (S.2.48), but similar routine

arguments can be applied to deal with higher order terms.

The modulus of the LHS of (S.2.40) has expectation bounded by

C

n

∑
i

∑
j<i

|ψsij ||ψtij |E
(
v̂4i
)1/2 E (v̂4j )1/2 ≤ C

n

∑
i

∑
j

|ψsij ||ψtij |

(∑
v

B2
iv

)(∑
h

B2
jh

)

≤ C

n

∑
i

∑
j

|ψsij ||ψtij |BiiBjj ≤
C

nh2

∑
i

∑
j

BiiBjj = O

(
1

h2n

)
. (S.2.45)

Similarly, the modulus of the LHS of (S.2.41) has expectation bounded by

C

n

∑
i

∑
j<i

|ψsij ||ψtij |
(
Ev̂4j

)1/4 (Ev̂4i )1/2 (Eε4j)1/4 ≤ C

n

∑
i

∑
j<i

|ψsij ||ψtij |

(∑
v

B2
jv

)1/2(∑
h

B2
ih

)

≤ C

n

∑
i

∑
j<i

|ψsij ||ψtij |B1/2
jj Bii ≤

C

nh

∑
i

∑
j

|ψsij |Bii ≤
C

nh
sup
i

∑
j

|ψsij |
∑
i

Bii = O

(
1

nh

)
, (S.2.46)

as B
1/2
jj < 1. The modulus of the LHS of (S.2.42) has expectation bounded by

C

n

∑
i

∑
j<i

|ψsij ||ψtij |
(
Ev̂4i

)1/4 (Ev̂4j )1/4 (Eε4j)1/4 (Eε4i )1/4 ≤ C

n

∑
i

∑
j<i

|ψsij ||ψtij |B1/2
ii B

1/2
jj

C

n

∑
i

∑
j<i

|ψsij ||ψtij |(Bii +Bjj) ≤
C

nh

sup
i

∑
j

|ψsij |
∑
i

Bii + sup
j

∑
i

|ψsij |
∑
j

Bjj

 = O

(
1

nh

)
.

(S.2.47)
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(S.2.43) can be shown by similar arguments as (S.2.40)-(S.2.42), while (S.2.48) can be written as

1

n

∑
i

∑
j<i

ψsijψtijBjiε
3
i εj +

1

n

∑
i

∑
j<i

ψsijψtijε
2
i ε

2
jBjj +

1

n

∑
i

∑
j<i

∑
u 6=j,i

ψsijψtijε
2
i εjεuBju (S.2.48)

The modulus of the first term in the last displayed expression has expectation bounded by

C

n

∑
i

∑
j<i

|ψsij |ψtij ||Bij | ≤
C

n

∑
i

∑
j

|ψsij |ψtij |(Bii +Bjj) = O

(
1

hn

)
, (S.2.49)

as in previous calculations. Similarly, the second term in (S.2.48) is O(1/nh), while the third term

has mean zero and variance bounded by

C

n2

∑
i

∑
j

∑
u

∑
l

|ψsijψtijψsilψtil|B2
uj +

C

n2

∑
i

∑
j

∑
k

∑
l

|ψsijψtijψsklψtkl|B2
lj

C

n2

∑
i

∑
j

∑
l

|ψsijψtijψsilψtil|Bjj +
C

n2

∑
i

∑
j

∑
k

∑
l

|ψsijψtijψsklψtkl|B2
jl. (S.2.50)

Proceeding as before, the first term in the last displayed expression is bounded by O(1/n2h2), while

the second one is bounded by O(1/nh2). By Markov’s inequality, this conclude the proof of (S.2.32).

In order to show (S.2.33) we apply a standard mean value theorem argument, such as

1

n

∑
i

∑
j<i

ε̂2i ε̂
2
j (ψ̂sijψ̂tij − ψsijψtij) =

1

n

∑
i

∑
j<i

ε̂2i ε̂
2
j

(
ψ̄sij(ψ̂tij − ψtij) + ψ̄tij(ψ̂sij − ψsij)

)
, (S.2.51)

where ψ̄sij (or ψ̄tij) is an intermediate point between ψ̂sij and ψsij . From Theorem 1, ψ̂sij − ψsij =

Op(1/
√
n) and thus ψ̄sij − ψsij = op(1). Therefore, (S.2.51) is bounded by

sup
i,j
|ψ̂sij − ψsij |

1

n

∑
i

∑
j<i

ε̂2i ε̂
2
j |ψtij |. (S.2.52)

By similar arguments to those applied to prove (S.2.31) and (S.2.32), we conclude that as n→∞

1

n

∑
i

∑
j<i

ε̂2i ε̂
2
j |ψtij | →

p
lim

1

n

∑
i

∑
j<i

σ2
i σ

2
j |ψtij |, (S.2.53)

which is O(1) in the limit. Thus, (S.2.52) is Op(1/
√
n), concluding the proof of (A.8).
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S.3 Additional simulation results

This section reports additional simulation results to support the discussion in Section 7 of the paper.

Results in Tables S1 and S2 have been obtained using a symmetric, randomly generated matrix of

zeros and ones, where the number of ones is restricted to be 20% of the total entries. The resulting

matrix is then normalized so that each row sums to 1. As discussed in the manuscript, W is generated

once for each n and is kept fixed across scenarios. Table S1 contains results for σi generated as in

(7.2) in the manuscript, while Table S2 displays values for σi generated from χ2(5).

Tables S3 and S4 have been obtained by setting β0 = (2, 1.5,−1) and X being n× 3, with the first

regressor being an n× 1 column of ones and other two being randomly drawn from two independent

uniform distributions on the support [0, 4]. The rest of the design is identical to that described in

Section 7 in the main manuscript. In both S3 and S4 W is ‘exponential’, with S3 corresponding to σi

generated as in (7.2) in the manuscript, while S4 displaying values for σi generated from χ2(5).

Tables S5 and S6 report results for CUII, QML, MQML and RGMM when the true data generating

process is a pure SAR, while the estimated model is a SARX with intercept and one exogenous regressor

which is drawn from a uniform distribution on the support [0, 1]. In both S5 and S6 W is ‘exponential’,

with S5 corresponding to σi generated as in (7.2) in the manuscript, while S6 displaying values for

σi generated from χ2(5). The rest of the design is identical to that described in Section 7 of the

manuscript.
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n = 30 n = 50 n = 100 n = 200

CUII λ bias MSE bias MSE bias MSE bias MSE

−0.5 -0.0929 0.2956 -0.0476 0.1763 -0.0064 0.1307 -0.0156 0.1311

0.3 0.0110 0.2437 0.0193 0.1760 0.0073 0.1376 0.0029 0.1333

0.5 0.0474 0.2298 0.0419 0.1854 0.0477 0.1405 0.0061 0.1394

0.8 0.1142 0.2000 0.0550 0.1526 0.0332 0.1230 0.0385 0.1235

ML λ bias MSE bias MSE bias MSE bias MSE

−0.5 -0.0322 0.1031 -0.0833 0.1068 -0.0686 0.1056 -0.0806 0.1162

0.3 -0.1788 0.1403 -0.1713 0.1286 -0.1725 0.1166 -0.1680 0.1134

0.5 -0.2266 0.1484 -0.1855 0.1202 -0.1839 0.1023 -0.2093 0.1191

0.8 -0.2760 0.1486 -0.2629 0.1299 -0.2757 0.1235 -0.2686 0.1245

MQML λ bias MSE bias MSE bias MSE bias MSE

−0.5 0.0508 0.1425 0.0127 0.1187 0.0165 0.1156 -0.0035 0.1244

0.3 -0.0281 0.1423 -0.0073 0.1308 -0.0084 0.1181 -0.0084 0.1199

0.5 -0.0261 0.1393 -0.0206 0.1283 0.0120 0.1109 -0.0127 0.1241

0.8 -0.0136 0.1173 -0.0286 0.1093 -0.0205 0.1011 0.0060 0.1094

2SLS λ bias MSE bias MSE bias MSE bias MSE

−0.5 -0.6496 3.3561 -0.7360 6.4335 -0.7703 11.0633 -0.3523 17.3900

0.3 -0.2990 3.6600 0.3778 4.4825 -0.1449 7.5171 0.0250 11.5254

0.5 0.0666 3.7634 0.2094 4.2141 0.1665 6.2116 0.3013 10.6641

0.8 0.3420 2.0216 0.2889 2.7892 0.2744 3.8288 0.1160 5.1442

RGMM λ bias MSE bias MSE bias MSE bias MSE

−0.5 -0.3042 0.8991 -0.1418 0.2627 -0.0892 0.1509 -0.0956 0.1434

0.3 -0.1103 0.6274 -0.0616 0.4327 -0.1353 0.5117 -0.1319 0.4633

0.5 -0.0825 0.5744 -0.0103 0.9525 -0.1008 0.4841 -0.1327 0.6457

0.8 0.0582 0.9081 0.0306 0.8375 -0.0524 0.8867 -0.0916 2.6146

Table S1: Bias & MSE of CUII, ML, MQML, 2SLS and RGMM estimators for ‘random’ W . The εis

are defined as in (7.1) with ζi ∼ iid t(5) and σi defined as in (7.2). The design corresponds to an

artificially dense choice of W .
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n = 30 n = 50 n = 100 n = 200

CUII λ bias MSE bias MSE bias MSE bias MSE

−0.5 -0.0464 0.1597 -0.0079 0.1646 -0.0100 0.1352 -0.0106 0.1193

0.3 -0.0181 0.1473 -0.0118 0.1411 0.0032 0.1315 0.0087 0.1349

0.5 0.0234 0.1435 0.0126 0.1353 0.0094 0.1307 0.0240 0.1298

0.8 0.0126 0.1401 0.0351 0.1329 0.0272 0.1226 -0.0026 0.1196

QML λ bias MSE bias MSE bias MSE bias MSE

−0.5 -0.0264 0.0806 -0.0200 0.1036 -0.0582 0.1073 -0.0757 0.1063

0.3 -0.1866 0.1208 -0.1706 0.1144 -0.1679 0.1087 -0.1601 0.1130

0.5 -0.1662 0.1092 -0.1911 0.1111 -0.2081 0.1135 -0.1909 0.1081

0.8 -0.2536 0.1320 -0.2397 0.1114 -0.2690 0.1192 -0.2919 0.1344

MQML λ bias MSE bias MSE bias MSE bias MSE

−0.5 0.0258 0.0967 0.0429 0.1219 0.0162 0.1187 0.0016 0.1133

0.3 -0.0097 0.1092 -0.0240 0.1134 -0.0052 0.1140 0.0039 0.1249

0.5 -0.0034 0.1076 -0.0167 0.1055 -0.0090 0.1115 0.0120 0.1166

0.8 -0.0361 0.1007 -0.0166 0.1017 -0.0096 0.0996 -0.0257 0.1067

2SLS λ bias MSE bias MSE bias MSE bias MSE

−0.5 -0.2671 1.9420 -0.1351 5.3380 -0.9920 12.0616 -1.0292 22.5435

0.3 -0.1673 2.3131 -0.0803 4.4500 -0.5362 8.1619 0.0281 25.9411

0.5 0.0434 2.9366 0.3936 5.4701 0.1937 7.4490 0.2233 15.9209

0.8 0.2173 1.0161 0.2689 1.9738 0.0910 6.4317 0.0224 8.4702

RGMM λ bias MSE bias MSE bias MSE bias MSE

−0.5 -0.1750 0.6055 -0.0583 0.2043 -0.0973 0.1515 -0.1020 0.1471

0.3 -0.1162 0.5475 -0.1183 0.7414 -0.1641 0.2754 -0.1658 0.2963

0.5 -0.0365 0.6129 -0.0125 0.8190 -0.1210 0.7283 -0.1509 0.6385

0.8 0.0011 0.7205 0.0344 0.8222 -0.1000 1.1082 -0.1832 1.4971

Table S2: Bias & MSE of CUII, ML, MQML, 2SLS and RGMM estimators for ‘random’ W . The εis

are defined as in (7.1) with ζi ∼ iidN(0, 1) and σi ∼ χ2(5). The design corresponds to an artificially

dense choice of W .
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n = 30 n = 50 n = 100 n = 200

CUII λ bias MSE bias MSE bias MSE bias MSE

−0.5 -0.0293 0.0408 -0.0293 0.0451 -0.0176 0.0243 -0.0156 0.0161

0.3 -0.0162 0.0119 -0.0195 0.0113 -0.0104 0.0083 -0.0149 0.0091

0.5 -0.0140 0.0139 -0.0130 0.0060 -0.0061 0.0070 -0.0117 0.0056

0.8 -0.0119 0.0036 -0.0114 0.0024 -0.0063 0.0018 -0.0044 0.0007

QML λ bias MSE bias MSE bias MSE bias MSE

−0.5 -0.0463 0.0416 -0.0475 0.0449 -0.0331 0.0254 -0.0242 0.0166

0.3 -0.0254 0.0126 -0.0257 0.0118 -0.0149 0.0086 -0.0181 0.0093

0.5 -0.0286 0.0148 -0.0185 0.0064 -0.0085 0.0073 -0.0129 0.0057

0.8 -0.0175 0.0040 -0.0139 0.0026 -0.0070 0.0019 -0.0043 0.0007

MQML λ bias MSE bias MSE bias MSE bias MSE

−0.5 -0.0108 0.0490 -0.0215 0.0440 -0.0141 0.0239 -0.0144 0.0161

0.3 -0.0423 0.0815 -0.0275 0.0332 -0.0112 0.0083 -0.0153 0.0091

0.5 -0.0205 0.0257 -0.0464 0.1466 -0.0077 0.0071 -0.0125 0.0056

0.8 -0.1472 1.4401 -0.0132 0.0026 -0.0082 0.0019 -0.0047 0.0008

2SLS λ bias MSE bias MSE bias MSE bias MSE

−0.5 0.0031 0.0563 0.0103 0.0654 0.0059 0.0359 0.0039 0.0227

0.3 0.0031 0.0124 -0.0086 0.0131 0.0094 0.0097 -0.0019 0.0105

0.5 0.0093 0.0165 -0.0002 0.0059 0.0106 0.0087 -0.0033 0.0062

0.8 0.0043 0.0036 -0.0030 0.0025 0.0034 0.0022 -0.0001 0.0008

RGMM λ bias MSE bias MSE bias MSE bias MSE

−0.5 -0.0221 0.0439 -0.0266 0.0509 -0.0143 0.0273 -0.0095 0.0184

0.3 -0.0121 0.0124 -0.0086 0.0131 -0.0074 0.0091 -0.0132 0.0100

0.5 -0.0069 0.0151 -0.0123 0.0065 -0.0055 0.0083 -0.0116 0.0061

0.8 -0.0110 0.0043 -0.0104 0.0030 -0.0045 0.0027 -0.0030 0.0007

CUGMM λ bias MSE bias MSE bias MSE bias MSE

−0.5 -0.0067 0.0940 -0.0063 0.0388 -0.0021 0.0246 -0.0101 0.0233

0.3 -0.0063 0.0080 -0.0104 0.0177 -0.0088 0.0094 -0.0046 0.0073

0.5 -0.0078 0.0067 -0.0081 0.0060 -0.0066 0.0039 -0.0086 0.0046

0.8 -0.0033 0.0016 -0.0020 0.0009 -0.0037 0.0010 -0.0037 0.0009

Table S3: Bias & MSE of CUII, ML, MQML, 2SLS, RGMM and CUGMM estimators for ‘exponential’

W using 1000 Monte Carlo replications. The εis are defined as in (7.1) with ζi ∼ iid t(5) and σi is

defined as in (7.2). The design corresponds to a strong relevance of instruments.
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n = 30 n = 50 n = 100 n = 200

CUII λ bias MSE bias MSE bias MSE bias MSE

−0.5 -0.0668 0.1386 -0.0386 0.0791 -0.0220 0.0465 -0.0074 0.0342

0.3 -0.0458 0.0540 -0.0246 0.0464 -0.0113 0.0165 -0.0146 0.0287

0.5 -0.0427 0.0312 -0.0316 0.0298 -0.0093 0.0139 -0.0163 0.0125

0.8 -0.0222 0.0091 -0.0155 0.0071 -0.0083 0.0050 -0.0077 0.0079

QML λ bias MSE bias MSE bias MSE bias MSE

−0.5 -0.0702 0.1064 -0.0564 0.0696 -0.0158 0.0404 -0.0202 0.0349

0.3 -0.0793 0.0539 -0.0603 0.0435 -0.0298 0.0165 -0.0315 0.0281

0.5 -0.0726 0.0344 -0.0685 0.0302 -0.0352 0.0140 -0.0284 0.0123

0.8 -0.0472 0.0115 -0.0334 0.0084 -0.0289 0.0049 -0.0257 0.0066

MQML λ bias MSE bias MSE bias MSE bias MSE

−0.5 -0.0473 0.1358 -0.0215 0.0742 -0.0140 0.0450 -0.0033 0.0336

0.3 -0.0483 0.0510 -0.0303 0.0426 -0.0134 0.0161 -0.0179 0.0274

0.5 -0.0453 0.0309 -0.0419 0.0271 -0.0137 0.0130 -0.0211 0.0119

0.8 -0.0297 0.0094 -0.0220 0.0073 -0.0159 0.0042 -0.0213 0.0063

2SLS λ bias MSE bias MSE bias MSE bias MSE

−0.5 0.1104 0.3900 0.0265 0.2288 0.0332 0.1513 0.0402 0.0806

0.3 0.0421 0.0812 0.0351 0.1248 0.0148 0.0290 0.0401 0.0625

0.5 0.0031 0.0412 0.0101 0.0582 0.0127 0.0270 -0.0138 0.0224

0.8 0.0109 0.0113 0.0043 0.0114 0.0001 0.0074 0.0006 0.0082

RGMM λ bias MSE bias MSE bias MSE bias MSE

−0.5 -0.0588 0.2053 -0.0413 0.1093 -0.0199 0.0681 -0.0025 0.0502

0.3 -0.0317 0.0619 -0.0073 0.0853 -0.0120 0.0219 -0.0108 0.0375

0.5 -0.0361 0.0434 -0.03451 0.0741 -0.0085 0.0195 -0.0321 0.0208

0.8 -0.0080 0.0144 -0.0108 0.0159 -0.0235 0.0223 -0.0149 0.0220

CUGMM bias MSE bias MSE bias MSE bias MSE

−0.5 0.0492 0.3059 0.0178 0.4043 -0.0210 0.0806 -0.0142 0.0568

0.3 -0.0454 0.1164 -0.0585 0.0811 -0.0309 0.0443 -0.0145 0.0246

0.5 -0.0332 0.0568 -0.0270 0.0247 -0.0159 0.0138 -0.0274 0.0270

0.8 -0.0079 0.0046 -0.0155 0.0683 -0.0130 0.0053 -0.0226 0.0130

Table S4: Bias & MSE of CUII, ML, MQML, IV, RGMM and CUGMM estimators for ‘exponential’ W

using 1000 Monte Carlo replications. The εis are defined as in (7.1) with ζi ∼ iid t(5) and σi ∼ χ2(5).

The design corresponds to a strong relevance of instruments.
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n = 30 n = 50 n = 100 n = 200

CUII λ bias MSE bias MSE bias MSE bias MSE

−0.5 -0.1099 0.1836 -0.0689 0.1035 -0.0219 0.0379 -0.0128 0.0167

0.3 -0.0443 0.0819 -0.0334 0.0487 -0.0149 0.0197 -0.0072 0.0096

0.5 -0.0273 0.0672 -0.0214 0.0338 -0.0118 0.0142 -0.0052 0.0073

0.8 0.0413 -0.0937 0.0260 0.0233 0.0224 0.0113 0.0115 0.0060

QML λ bias MSE bias MSE bias MSE bias MSE

−0.5 -0.0384 0.0636 -0.0139 0.0448 0.0156 0.0224 0.0190 0.0122

0.3 -0.1326 0.0763 -0.0943 0.0472 -0.0478 0.0200 -0.0305 0.0098

0.5 -0.1402 0.0692 -0.0948 0.0364 -0.0546 0.0154 -0.0360 0.0078

0.8 -0.0937 0.0316 -0.0643 0.0155 -0.0362 0.0061 -0.0247 0.0031

MQML λ bias MSE bias MSE bias MSE bias MSE

−0.5 -0.0312 0.0867 -0.0257 0.0615 -0.0066 0.0300 -0.0052 0.0146

0.3 -0.0536 0.0642 -0.0417 0.0423 -0.0188 0.0187 -0.0093 0.0093

0.5 -0.0611 0.0509 -0.0406 0.0283 -0.0212 0.0128 -0.0109 0.0067

0.8 0.0004 0.0842 0.0021 0.0283 0.0293 0.0299 -0.0005 0.0053

RGMM λ bias MSE bias MSE bias MSE bias MSE

−0.5 -0.0898 0.1885 -0.0681 0.1877 -0.0188 0.1372 -0.0109 0.1161

0.3 0.0780 0.4495 0.2229 0.6669 0.4425 0.9531 0.2037 0.4949

0.5 0.2137 0.5528 0.4398 0.9161 0.6847 1.1509 0.7826 1.3339

0.8 0.2979 0.3711 0.4606 0.4411 0.4389 0.4054 0.5763 0.4810

Table S5: Bias & MSE of CUII, ML, MQML and RGMM estimators for ‘exponential’ W using 1000

Monte Carlo replications. The εis are defined as in (7.1) with ζi ∼ iid t(5) and σi is defined as in

(7.2). The design corresponds a misspecification setting where the true data generating process is a

pure SAR, while the fitted model includes an intercept and one exogenous regressor drawn from a

uniform distribution on [0, 1].
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n = 30 n = 50 n = 100 n = 200

CUII λ bias MSE bias MSE bias MSE bias MSE

−0.5 -0.0886 0.1403 -0.0470 0.0648 -0.0150 0.0254 -0.0024 0.0141

0.3 -0.0396 0.0675 -0.0210 0.0393 -0.0139 0.0168 -0.0031 0.0090

0.5 -0.0255 0.0556 -0.0096 0.0286 -0.0054 0.0107 -0.0012 0.0068

0.8 0.0129 0.0320 0.0139 0.0211 0.0115 0.0089 0.0124 0.0056

QML λ bias MSE bias MSE bias MSE bias MSE

−0.5 -0.0328 0.0541 -0.0365 0.0417 -0.0290 0.0206 -0.0135 0.0136

0.3 -0.1269 0.0674 -0.0669 0.0385 -0.0327 0.0177 -0.0134 0.0090

0.5 -0.1107 0.0547 -0.0611 0.0278 -0.0168 0.0105 -0.0125 0.0063

0.8 -0.0901 0.0266 -0.0595 0.0148 -0.0148 0.0039 -0.0071 0.0023

MQML λ bias MSE bias MSE bias MSE bias MSE

−0.5 -0.0175 0.0690 -0.0156 0.0457 0.0009 0.0202 0.0013 0.0132

0.3 -0.0419 0.0557 -0.0263 0.0352 -0.0179 0.0160 -0.0054 0.0087

0.5 -0.0430 0.0429 -0.0234 0.0240 -0.0109 0.0096 -0.0068 0.0060

0.8 -0.0070 0.0610 0.0021 0.0452 0.0239 0.0269 0.0014 0.0055

RGMM λ bias MSE bias MSE bias MSE bias MSE

−0.5 -0.0940 0.1472 -0.0543 0.0833 -0.0382 0.0327 -0.0169 0.0158

0.3 0.0380 0.2930 0.0845 0.2877 0.0683 0.1795 0.0327 0.0776

0.5 0.1411 0.3761 0.2661 0.5124 0.3986 0.6379 0.3764 0.6269

0.8 0.2016 0.2253 0.3360 0.3320 0.3735 0.2693 0.5598 0.4289

Table S6: Bias & MSE of CUII, ML, MQML and RGMM estimators for ‘exponential’ W using 1000

Monte Carlo replications. The εis are defined as in (7.1) with ζi ∼ iid t(5) and σi ∼ χ2(5). The design

corresponds a misspecification setting where the true data generating process is a pure SAR, while

the fitted model includes an intercept and one exogenous regressor drawn from a uniform distribution

on [0, 1].
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S.4 Figures

Block diagonal W matrix at n=100 (m=20, r=5), row normalized
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Figure S1: Weight Matrix structures. Top: (L) block diagonal W; (R) circulant, two ahead-two

behind; Bottom: (L) ‘exponential’, (R) ‘random’. n = 100.
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Figure S2: 3D plot of W geo. W geo is defined such that wij = 1/geoij , resulting in a non-sparse

structure with weights that decay with Euclidean/geographical distance. n = 506.
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Figure S3: 3D plot of W geo,exp. W geo,exp is defined such that wij = exp (−|geoij |)1(|geoij | < log(n)),

resulting in sparsity that amounts to about 37%. n = 506.
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Figure S4: 3D plot of W geo,0.9. W geo,0.9 is defined such that wij = 1(|geoij | < D∗), resulting in

sparsity that amounts to about 9%. n = 506.
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Figure S5: 3D plot of weight matrix W tax. W tax is defined such that wij = 1/|taxi− taxj |, resulting

in a non-sparse structure with weights that decay with an economic distance driven by tax similarity.

n = 506.
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Figure S6: 3D plot of weight matrix W school. W school is defined such that wij = 1/|schooli−schoolj |,

resulting in a non-sparse structure with weights that decay with an economic distance driven by socio-

economic similarity. n = 506.
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Figure S7: Approximate binding functions for W geo, W exp,dis, W geo.0.9, W tax and W school. n = 506.
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